List of all functions
Here an overview of all functions:
GeophysicalModelGenerator.CartData
— MethodData = CartData(Grid::CartGrid, fields::NamedTuple; y_val=0.0)
Returns a CartData set given a cartesian grid Grid
and fields
defined on that grid.
GeophysicalModelGenerator.CartData
— MethodCartData(Grid::LaMEM_grid, fields::NamedTuple)
Creates a CartData
struct from a LaMEM grid and from fields stored on that grid. Note that one needs to have a field Phases
and optionally a field Temp
to create LaMEM marker files.
GeophysicalModelGenerator.CartData
— MethodCartData(xyz::Tuple{Array,Array,Array})
This creates a CartData
struct if you have a Tuple with 3D coordinates as input.
Example
julia> data = CartData(xyz_grid(-10:10,-5:5,0))
CartData
size : (21, 11, 1)
x ϵ [ -10.0 km : 10.0 km]
y ϵ [ -5.0 km : 5.0 km]
z ϵ [ 0.0 km : 0.0 km]
fields : (:Z,)
attributes: ["note"]
GeophysicalModelGenerator.CartGrid
— TypeStructure that holds data for an orthogonal cartesian grid, which can be described with 1D vectors
GeophysicalModelGenerator.GMG_Dataset
— TypeStructure that stores info about a GMG Dataset, which is useful to collect a wide variety of datasets.
- Name :: String # Name of the dataset
- Type :: String # Volumetric, Surface, Point, Screenshot
- DirName :: String # Directory name or url of dataset
- active :: Bool # should this data be loaded or not?
GeophysicalModelGenerator.GeoData
— MethodGeoData(lld::Tuple{Array,Array,Array})
This creates a GeoData
struct if you have a Tuple with 3D coordinates as input.
Example
julia> data = GeoData(lonlatdepth_grid(-10:10,-5:5,0))
GeoData
size : (21, 11, 1)
lon ϵ [ -10.0 : 10.0]
lat ϵ [ -5.0 : 5.0]
depth ϵ [ 0.0 : 0.0]
fields : (:Z,)
GeophysicalModelGenerator.ParaviewData
— MethodParaviewData(Grid::LaMEM_grid, fields::NamedTuple)
Creates a ParaviewData
struct from a LaMEM grid and from fields stored on that grid. Note that one needs to have a field Phases
and optionally a field Temp
to create LaMEM marker files.
GeophysicalModelGenerator.ProfileData
— TypeStructure that holds profile data (interpolated/projected on the profile)
struct ProfileData
vertical :: Bool # vertical:true, horizontal:false
start_lonlat :: Union{Nothing,Tuple{Float64,Float64}}
end_lonlat :: Union{Nothing,Tuple{Float64,Float64}}
depth :: Union{Nothing,Float64}
VolData :: GeophysicalModelGenerator.GeoData
SurfData :: Union{Nothing, NamedTuple}
PointData :: Union{Nothing, NamedTuple}
end
Structure to store cross section data
GeophysicalModelGenerator.ProjectionPoint
— MethodProjectionPoint(EW::Float64, NS::Float64, Zone::Int64, isnorth::Bool)
Defines a projection point used for map projections, by specifying UTM coordinates (EW/NS), UTM Zone and whether you are on the northern hemisphere
GeophysicalModelGenerator.ProjectionPoint
— MethodProjectionPoint(; Lat=49.9929, Lon=8.2473)
Defines a projection point used for map projections, by specifying latitude and longitude
GeophysicalModelGenerator.Q1Data
— MethodQ1Data(xyz::Tuple{Array,Array,Array})
This creates a Q1Data
struct if you have a Tuple with 3D coordinates as input.
Example
julia> data = Q1Data(xyz_grid(-10:10,-5:5,0))
CartData
size : (21, 11, 1)
x ϵ [ -10.0 km : 10.0 km]
y ϵ [ -5.0 km : 5.0 km]
z ϵ [ 0.0 km : 0.0 km]
fields : (:Z,)
attributes: ["note"]
GeophysicalModelGenerator.Trench
— TypeTrench structure
Structure that defines the geometry of the trench and the slab.
Parameters
Start
- Start of the trench (x
,y
) coordinatesEnd
- End of the trench (x
,y
) coordinatesn_seg
- The number of segment through which the slab is discretize along the dipLength
- The length of the slabThickness
- The thickness of the slabLb
- Critical distance through which apply the bending angle functions Lb ∈ [0,Length];θ_max
- maximum angle of bending ∈ [0°,90°].direction
- the direction of the dip The rotation of the coordinate system is done as such that the new X is parallel to the segment. Since the rotation is anticlockwise the coordinate y has specific values: direction tells if the subduction is directed along the positive or negative direction of the new y coordinate system. In practice, it apply an additional transformation to y by multiplying it with -1 or +1;d_decoupling
- depth at which the slab is fully submerged into the mantle.type_bending
- is the type of bending angle of the slab [:Linear
,:Ribe
]. The angle of slab changes as a function ofl
(∈ [0,Length]).l
is the actual distance along the slab length from the trench. In case: -:Linear
math θ(l) = ((θ_max - 0.0)/(Lb-0))*l
; -:Ribe
math θ(l) = θ_max*l^2*((3*Lb-2*l))/(Lb^3)
; which is taken from Ribe 2010 [Bending mechanics and mode selection in free subduction: a thin-sheet analysis]For l>Lb, θ(l) = θ_max;
WeakzoneThickness
- Thickness of the weakzone [km]WeakzonePhase
- Phase of the weakzone
Base.convert
— MethodConverts a UTMData
structure to a GeoData
structure
Base.convert
— MethodConverts a GeoData
structure to a UTMData
structure
GeophysicalModelGenerator.Create1D_grid_vector
— MethodReturns 1D coordinate vectors of grid points and of marker locations for a regular spacing
GeophysicalModelGenerator.Create1D_grid_vector
— MethodReturns 1D coordinate vectors of grid points and of marker locations for a regular spacing
GeophysicalModelGenerator.InterpolateDataFields2D_vecs
— MethodInterpolateDataFields2D_vecs(x_vec, y_vec, depth, fields_new, X, Y)
Interpolates a data field V
on a 2D grid defined by UTM
. Typically used for horizontal surfaces
GeophysicalModelGenerator.ParseValue_CommandLineArgs
— MethodThis parses a LaMEM command line argument string and checks if the keyword exists there
GeophysicalModelGenerator.ParseValue_LaMEM_InputFile
— Methodvalue = ParseValue_LaMEM_InputFile(file,keyword,type; args::String=nothing)
Extracts a certain keyword
from a LaMEM input file
and convert it to a certain type. Optionally, you can also pass command-line arguments which will override the value read from the input file.
Example 1:
julia> nmark_z = ParseValue_LaMEM_InputFile("SaltModels.dat","nmark_z",Int64)
Example 2:
julia> nmark_z = ParseValue_LaMEM_InputFile("SaltModels.dat","nmark_z",Int64, args="-nel_x 128 -coord_x -4,4")
GeophysicalModelGenerator.PetscBinaryWrite_Vec
— MethodPetscBinaryWrite_Vec(filename, A)
Writes a vector A
to disk, such that it can be read with PetscBinaryRead
(which assumes a Big Endian type)
GeophysicalModelGenerator.Rot3D
— Methodxrot, yrot, zrot = Rot3D(X::Number,Y::Number,Z::Number, cosStrikeAngle, sindStrikeAngle, cosDipAngle, sinDipAngle)
Perform rotation for a point in 3D space
GeophysicalModelGenerator.above_surface
— MethodAbove = above_surface(Grid::CartGrid, DataSurface_Cart::CartData; above=true, cell=false)
Determines if points described by the Grid
CartGrid structure are above the Cartesian surface DataSurface_Cart
GeophysicalModelGenerator.above_surface
— Methodabove_surface(Data::GeoData, DataSurface::GeoData; above=true)
Returns a boolean array of size(Data.Lon), which is true for points that are above the surface DataSurface (or for points below if above=false).
This can be used, for example, to mask points above/below the Moho in a volumetric dataset or in a profile.
Example
First we create a 3D data set and a 2D surface:
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-300:25:0)km);
julia> Data = Depth*2;
julia> Data_set3D = GeoData(Lon,Lat,Depth,(Depthdata=Data,LonData=Lon))
GeoData
size : (11, 11, 13)
lon ϵ [ 10.0 : 20.0]
lat ϵ [ 30.0 : 40.0]
depth ϵ [ -300.0 km : 0.0 km]
fields: (:Depthdata, :LonData)
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,-40km);
julia> Data_Moho = GeoData(Lon,Lat,Depth+Lon*km, (MohoDepth=Depth,))
GeoData
size : (11, 11, 1)
lon ϵ [ 10.0 : 20.0]
lat ϵ [ 30.0 : 40.0]
depth ϵ [ -30.0 km : -20.0 km]
fields: (:MohoDepth,)
Next, we intersect the surface with the data set:
julia> Above = above_surface(Data_set3D, Data_Moho);
Now, Above
is a boolean array that is true for points above the surface and false for points below and at the surface.
GeophysicalModelGenerator.above_surface
— MethodAbove = above_surface(Data_LaMEM::LaMEM_grid, DataSurface_Cart::CartData)
Determines if points within the 3D LaMEM_grid
structure are above the Cartesian surface DataSurface_Cart
GeophysicalModelGenerator.above_surface
— MethodAbove = above_surface(Data_Cart::ParaviewData, DataSurface_Cart::ParaviewData; above=true)
Determines if points within the 3D Data_Cart
structure are above the Cartesian surface DataSurface_Cart
GeophysicalModelGenerator.above_surface
— MethodAbove = above_surface(Data_Cart::Union{Q1Data,CartData}, DataSurface_Cart::CartData; above=true)
Determines if points within the 3D Data_Cart
structure are above the Cartesian surface DataSurface_Cart
GeophysicalModelGenerator.add_box!
— Methodadd_box!(Phase, Temp, Grid::AbstractGeneralGrid; xlim::Tuple = (20,100), [ylim::Tuple = (1,10)], zlim::Tuple = (10,80),
Origin=nothing, StrikeAngle=0, DipAngle=0,
phase = ConstantPhase(1),
T=nothing,
cell=false )
Adds a box with phase & temperature structure to a 3D model setup. This simplifies creating model geometries in geodynamic models
Parameters
Phase
- Phase array (consistent with Grid)Temp
- Temperature array (consistent with Grid)Grid
- grid structure (can be any of the grid types inGMG
)xlim
- left/right coordinates of boxylim
- front/back coordinates of box [optional; if not specified we use the whole box]zlim
- bottom/top coordinates of boxOrigin
- the origin, used to rotate the box around. Default is the left-front-top cornerStrikeAngle
- strike angle of slabDipAngle
- dip angle of slabphase
- specifies the phase of the box. SeeConstantPhase()
,LithosphericPhases()
T
- specifies the temperature of the box. SeeConstantTemp()
,LinearTemp()
,HalfspaceCoolingTemp()
,SpreadingRateTemp()
,LithosphericTemp()
cell
- if true,Phase
andTemp
are defined on centers
Examples
Example 1) Box with constant phase and temperature & a dip angle of 10 degrees:
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_box!(Phases,Temp,Grid, xlim=(0,500), zlim=(-50,0), phase=ConstantPhase(3), DipAngle=10, T=ConstantTemp(1000))
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
Example 2) Box with halfspace cooling profile
julia> Grid = CartData(xyz_grid(-1000:10:1000,0,-660:10:0))
julia> Phases = zeros(Int32, size(Grid));
julia> Temp = zeros(Float64, size(Grid));
julia> add_box!(Phases,Temp,Grid, xlim=(0,500), zlim=(-50,0), phase=ConstantPhase(3), DipAngle=10, T=HalfspaceCoolingTemp(Age=30))
julia> Grid = addfield(Grid, (;Phases,Temp)); # Add to Cartesian model
julia> write_paraview(Grid,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
GeophysicalModelGenerator.add_cylinder!
— Methodadd_cylinder!(Phase, Temp, Grid::AbstractGeneralGrid; base::Tuple = (-1,-1,-1.5), cap::Tuple = (-1,-1,-0.5), radius::Number,
phase = ConstantPhase(1),
T=nothing, cell=false )
Adds a cylinder with phase & temperature structure to a 3D model setup. This simplifies creating model geometries in geodynamic models
Parameters
Phase
- Phase array (consistent with Grid)Temp
- Temperature array (consistent with Grid)Grid
- Grid structure (usually obtained withread_LaMEM_inputfile
)base
- center coordinate of bottom of cylindercap
- center coordinate of top of cylinderradius
- radius of the cylinderphase
- specifies the phase of the box. SeeConstantPhase()
,LithosphericPhases()
T
- specifies the temperature of the box. SeeConstantTemp()
,LinearTemp()
,HalfspaceCoolingTemp()
,SpreadingRateTemp()
cell
- if true,Phase
andTemp
are defined on cell centers
Example
Cylinder with constant phase and temperature:
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_cylinder!(Phases,Temp,Grid, base=(-1,-1,-1.5), cap=(1,1,-0.5), radius=0.25, phase=ConstantPhase(4), T=ConstantTemp(400))
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
GeophysicalModelGenerator.add_ellipsoid!
— Methodadd_ellipsoid!(Phase, Temp, Grid::AbstractGeneralGrid; cen::Tuple = (-1,-1,-1), axes::Tuple = (0.2,0.1,0.5),
Origin=nothing, StrikeAngle=0, DipAngle=0,
phase = ConstantPhase(1).
T=nothing, cell=false )
Adds an Ellipsoid with phase & temperature structure to a 3D model setup. This simplifies creating model geometries in geodynamic models
Parameters
Phase
- Phase array (consistent with Grid)Temp
- Temperature array (consistent with Grid)Grid
- LaMEM grid structure (usually obtained with readLaMEMinputfile)cen
- center coordinates of sphereaxes
- semi-axes of ellipsoid in X,Y,ZOrigin
- the origin, used to rotate the box around. Default is the left-front-top cornerStrikeAngle
- strike angle of slabDipAngle
- dip angle of slabphase
- specifies the phase of the box. SeeConstantPhase()
,LithosphericPhases()
T
- specifies the temperature of the box. SeeConstantTemp()
,LinearTemp()
,HalfspaceCoolingTemp()
,SpreadingRateTemp()
cell
- if true,Phase
andTemp
are defined on cell centers
Example
Ellipsoid with constant phase and temperature, rotated 90 degrees and tilted by 45 degrees:
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_ellipsoid!(Phases,Temp,Grid, cen=(-1,-1,-1), axes=(0.2,0.1,0.5), StrikeAngle=90, DipAngle=45, phase=ConstantPhase(3), T=ConstantTemp(600))
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
GeophysicalModelGenerator.add_fault!
— Methodadd_fault!(Phase, Temp, Grid::AbstractGeneralGrid;
Start=(20,100), End=(10,80),
Fault_thickness=10.0,
Depth_extent=nothing,
DipAngle=0e0,
phase=ConstantPhase(1),
T=nothing,
cell=false)
Adds a fault to the given 3D grid by modifying the Phase
and Temp
arrays. For a 2D grid, use add_box
instead.
Arguments
Phase
: Phase arrayTemp
: Temp arrayGrid
: The grid on which the fault is to be added.Start
: Tuple representing the starting coordinates of the fault (X, Y).End
: Tuple representing the ending coordinates of the fault (X, Y).Fault_thickness
: Thickness of the fault.Depth_extent
: Depth extent of the fault. Ifnothing
, the fault extends through the entire domain.DipAngle
: Dip angle of the fault.phase
: Phase to be assigned to the fault.T
: Temperature to be assigned to the fault. Ifnothing
, the temperature is not modified.
Example
add_fault!(Phase, Temp, Grid;
Start=(20,100), End=(10,80),
Fault_thickness=10.0,
Depth_extent=(-25.0, 0.0),
DipAngle=-10.0,
phase=ConstantPhase(1)
)
GeophysicalModelGenerator.add_layer!
— Methodadd_layer!(Phase, Temp, Grid::AbstractGeneralGrid; xlim::Tuple = (1,100), [ylim::Tuple = (0,20)], zlim::Tuple = (0,-100),
phase = ConstantPhase(1),
T=nothing, cell=false )
Adds a layer with phase & temperature structure to a 3D model setup. The most common use would be to add a lithospheric layer to a model setup. This simplifies creating model geometries in geodynamic models
Parameters
Phase
- Phase array (consistent with Grid)Temp
- Temperature array (consistent with Grid)Grid
- grid structure (usually obtained with readLaMEMinputfile, but can also be other grid types)xlim
- left/right coordinates of boxylim
- front/back coordinates of boxzlim
- bottom/top coordinates of boxphase
- specifies the phase of the box. SeeConstantPhase()
,LithosphericPhases()
T
- specifies the temperature of the box. SeeConstantTemp()
,LinearTemp()
,HalfspaceCoolingTemp()
,SpreadingRateTemp()
Examples
Example 1) Layer with constant phase and temperature
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_layer!(Phases,Temp,Grid, zlim=(-50,0), phase=ConstantPhase(3), T=ConstantTemp(1000))
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
Example 2) Box with halfspace cooling profile
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_layer!(Phases,Temp,Grid, zlim=(-50,0), phase=ConstantPhase(3), T=HalfspaceCoolingTemp())
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
GeophysicalModelGenerator.add_polygon!
— Method add_polygon!(Phase, Temp, Grid::AbstractGeneralGrid; xlim=(), ylim::Tuple = (0.0,0.8), zlim=(), phase = ConstantPhase(1), T=nothing, cell=false )
Adds a polygon with phase & temperature structure to a 3D model setup. This simplifies creating model geometries in geodynamic models
Parameters
Phase
- Phase array (consistent with Grid)Temp
- Temperature array (consistent with Grid)Grid
- Grid structure (usually obtained with readLaMEMinputfile)xlim
-x
-coordinate of the polygon points, same ordering as zlim, number of points unlimitedylim
-y
-coordinate, limitation in length possible (two values (start and stop))zlim
-z
-coordinate of the polygon points, same ordering as xlim, number of points unlimitedphase
- specifies the phase of the box. SeeConstantPhase()
T
- specifies the temperature of the box. SeeConstantTemp()
,LinearTemp()
,HalfspaceCoolingTemp()
,SpreadingRateTemp()
cell
- if true,Phase
andTemp
are defined on cell centers
Example
Polygon with constant phase and temperature:
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_polygon!(Phase, Temp, Cart; xlim=(0,0, 1.6, 2.0),ylim=(0,0.8), zlim=(0,-1,-2,0), phase = ConstantPhase(8), T=ConstantTemp(30))
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
GeophysicalModelGenerator.add_slab!
— Methodadd_slab!(Phase, Temp, Grid::AbstractGeneralGrid, trench::Trench; phase = ConstantPhase(1), T = nothing, cell=false)
Adds a curved slab with phase & temperature structure to a 3D model setup.
Parameters
Phase
- Phase array (consistent with Grid)Temp
- Temperature array (consistent with Grid)Grid
- grid structure (can be any of the grid types inGMG
)trench
- Trench structurephase
- specifies the phase of the box. SeeConstantPhase()
,LithosphericPhases()
T
- specifies the temperature of the box. SeeConstantTemp()
,LinearTemp()
,HalfspaceCoolingTemp()
,SpreadingRateTemp()
,LithosphericTemp()
cell
- if true,Phase
andTemp
are defined on cells
Examples
Example 1) Slab
julia> x = LinRange(0.0,1200.0,128);
julia> y = LinRange(0.0,1200.0,128);
julia> z = LinRange(-660,50,128);
julia> Cart = CartData(xyz_grid(x, y, z));
julia> Phase = ones(Int64,size(Cart));
julia> Temp = fill(1350.0,size(Cart));
# Define the trench:
julia> trench= Trench(Start = (400.0,400.0), End = (800.0,800.0), θ_max = 45.0, direction = 1.0, n_seg = 50, Length = 600.0, Thickness = 80.0, Lb = 500.0, d_decoupling = 100.0, type_bending =:Ribe)
julia> phase = LithosphericPhases(Layers=[5 7 88], Phases = [2 3 4], Tlab=nothing)
julia> TsHC = HalfspaceCoolingTemp(Tsurface=20.0, Tmantle=1350, Age=30, Adiabat=0.4)
julia> add_slab!(Phase, Temp, Cart, trench, phase = phase, T = TsHC)
GeophysicalModelGenerator.add_sphere!
— Methodadd_sphere!(Phase, Temp, Grid::AbstractGeneralGrid; cen::Tuple = (0,0,-1), radius::Number,
phase = ConstantPhase(1).
T=nothing, cell=false )
Adds a sphere with phase & temperature structure to a 3D model setup. This simplifies creating model geometries in geodynamic models
Parameters
Phase
- Phase array (consistent with Grid)Temp
- Temperature array (consistent with Grid)Grid
- LaMEM grid structure (usually obtained with readLaMEMinputfile)cen
- center coordinates of sphereradius
- radius of spherephase
- specifies the phase of the box. SeeConstantPhase()
,LithosphericPhases()
T
- specifies the temperature of the box. SeeConstantTemp()
,LinearTemp()
,HalfspaceCoolingTemp()
,SpreadingRateTemp()
cell
- if true,Phase
andTemp
are defined on cell centers
Example
Sphere with constant phase and temperature:
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_sphere!(Phases,Temp,Grid, cen=(0,0,-1), radius=0.5, phase=ConstantPhase(2), T=ConstantTemp(800))
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
GeophysicalModelGenerator.add_stripes!
— Methodadd_stripes!(Phase, Grid::AbstractGeneralGrid;
stripAxes = (1,1,0),
stripeWidth = 0.2,
stripeSpacing = 1,
Origin = nothing,
StrikeAngle = 0,
DipAngle = 10,
phase = ConstantPhase(3),
stripePhase = ConstantPhase(4),
cell = false)
Adds stripes to a pre-defined phase (e.g. added using add_box!)
Parameters
Phase
- Phase array (consistent with Grid)Grid
- grid structure (usually obtained with readLaMEMinputfile, but can also be other grid types)stripAxes
- sets the axis for which we want the stripes. Default is (1,1,0) i.e. X, Y and not ZstripeWidth
- width of the stripestripeSpacing
- space between two stripesOrigin
- the origin, used to rotate the box around. Default is the left-front-top cornerStrikeAngle
- strike angleDipAngle
- dip anglephase
- specifies the phase we want to apply stripes tostripePhase
- specifies the stripe phasecell
- if true,Phase
andTemp
are defined on centers
Example
Example: Box with striped phase and constant temperature & a dip angle of 10 degrees:
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Phases = zeros(Int32, size(Grid.X));
julia> Temp = zeros(Float64, size(Grid.X));
julia> add_box!(Phases,Temp,Grid, xlim=(0,500), zlim=(-50,0), phase=ConstantPhase(3), DipAngle=10, T=ConstantTemp(1000))
julia> add_stripes!(Phases, Grid, stripAxes=(1,1,1), stripeWidth=0.2, stripeSpacing=1, Origin=nothing, StrikeAngle=0, DipAngle=10, phase=ConstantPhase(3), stripePhase=ConstantPhase(4))
julia> Model3D = ParaviewData(Grid, (Phases=Phases,Temp=Temp)); # Create Cartesian model
julia> write_paraview(Model3D,"LaMEM_ModelSetup") # Save model to paraview
1-element Vector{String}:
"LaMEM_ModelSetup.vts"
GeophysicalModelGenerator.add_volcano!
— Methodaddvolcano!( Phases, Temp, Grid::CartData; volcanicphase, center, height, radius, crater, base, background, T, )
Adds a volcano topography (cones and truncated cones)
Parameters
- Phases - Phase array (consistent with Grid)
- Temp - Temperature array (consistent with Grid)
- Grid - CartData
Optional Parameters
- volcanic_phase - phase number of the volcano,
- center - x- and -coordinates of center of volcano
- height - height of volcano
- radius - radius of volcano
- T - temperature structure of the volcano
- crater - this will create a truncated cone and the option defines the radius of the flat top
- base - this sets the flat topography around the volcano
- background - this allows loading in a topography and only adding the volcano on top (also allows stacking of several cones to get a volcano with different slopes)
GeophysicalModelGenerator.addfield
— MethodV = addfield(V::AbstractGeneralGrid,field_name::String,data::Any)
Add Fields Data to GeoData or CartData
GeophysicalModelGenerator.addfield
— MethodV = addfield(V::CartData,new_fields::NamedTuple)
Add new_fields
fields to a CartData
dataset
GeophysicalModelGenerator.addfield
— MethodV = addfield(V::FEData,new_fields::NamedTuple; cellfield=false)
Add new_fields
fields to a FEData
dataset; set cellfield
to true
if the field is a cell field; otherwise it is a vertex field
GeophysicalModelGenerator.addfield
— MethodV = addfield(V::GeoData,new_fields::NamedTuple)
Add new_fields
fields to a GeoData
dataset
GeophysicalModelGenerator.addfield
— MethodV = addfield(V::Q1Data,new_fields::NamedTuple; cellfield=false)
Add new_fields
fields to a Q1Data
dataset; set cellfield
to true
if the field is a cell field; otherwise it is a vertex field
GeophysicalModelGenerator.average_q1
— Methodout = average_q1(d::Array)
3D linear averaging of a 3D array
GeophysicalModelGenerator.below_surface
— FunctionBelow = below_surface(Data_Cart::Union{CartData,Q1Data}, DataSurface_Cart::CartData, cell=false)
Determines if points within the 3D Data_Cart
structure are below the Cartesian surface DataSurface_Cart
GeophysicalModelGenerator.below_surface
— MethodBelow = below_surface(Grid::CartGrid, DataSurface_Cart::CartData)
Determines if points described by the `Grid` CartGrid structure are above the Cartesian surface `DataSurface_Cart`
GeophysicalModelGenerator.below_surface
— MethodBelow = below_surface(Data::GeoData, DataSurface::GeoData)
Determines if points within the 3D Data
structure are below the GeoData surface DataSurface
GeophysicalModelGenerator.below_surface
— MethodBelow = below_surface(Data_LaMEM::LaMEM_grid, DataSurface_Cart::CartData)
Determines if points within the 3D LaMEM_grid
structure are below the Cartesian surface DataSurface_Cart
GeophysicalModelGenerator.below_surface
— MethodBelow = below_surface(Data_Cart::ParaviewData, DataSurface_Cart::ParaviewData)
Determines if points within the 3D DataCart structure are below the Cartesian surface DataSurfaceCart
GeophysicalModelGenerator.cell_area
— Methodarea_m2 = cell_area(Topo::GeoData)
Returns the cell area for a Topographic dataset in m² (required for upstream area calculation)
GeophysicalModelGenerator.cell_tags_from_gmsh
— Methodtags = cell_tags_from_gmsh(mesh::GmshDiscreteModel)
Returns a list with integers that are the tags for each of the cells
GeophysicalModelGenerator.combine_vol_data
— MethodVolData_combined = combine_vol_data(VolData::NamedTuple; lat=nothing, lon=nothing, depth=nothing, dims=(100,100,100), dataset_preferred = 1)
This takes different volumetric datasets (specified in VolData
) & merges them into a single one. You need to either provide the "reference" dataset within the NamedTuple (dataset_preferred
), or the lat/lon/depth and dimensions of the new dataset.
GeophysicalModelGenerator.compute_bending_angle
— Methodθ = compute_bending_angle(θ_max,Lb,l,type)
function that computes the bending angle θ
as a function of length along the slab l
.
Parameters
θ_max
= maximum bending angle Lb
= length at which the function of bending is applied (Lb<=Length) l
= current position within the slab type
= type of bending [:Ribe
,:Linear
]
GeophysicalModelGenerator.compute_phase
— MethodPhase = compute_phase(Phase, Temp, X, Y, Z, s::LithosphericPhases, Ztop)
or
Phase = compute_phase(Phase, Temp, Grid::AbstractGeneralGrid, s::LithosphericPhases)
This copies the layered lithosphere onto the Phase matrix.
Parameters
- Phase - Phase array
- Temp - Temperature array
- X - x-coordinate array (consistent with Phase and Temp)
- Y - y-coordinate array (consistent with Phase and Temp)
- Z - Vertical coordinate array (consistent with Phase and Temp)
- s - LithosphericPhases
- Ztop - Vertical coordinate of top of model box
- Grid - Grid structure (usually obtained with readLaMEMinputfile)
GeophysicalModelGenerator.compute_slab_surface
— MethodTop, Bot = compute_slab_surface(trench::Trench)
Computes the (x
,z
) coordinates of the slab top, bottom surface using the mid surface of the slab as reference.
Parameters
trench
-Trench
structure that contains the relevant parameters
Method
It computes it by discretizing the slab surface in n_seg
segments, and computing the average bending angle (which is a function of the current length of the slab). Next, it compute the coordinates assuming that the trench is at 0.0, and assuming a positive θ_max
angle.
GeophysicalModelGenerator.compute_thermal_structure
— Methodcompute_thermal_structure(Temp, X, Y, Z, Phase, s::LinearWeightedTemperature)
Weight average along distance
Do a weight average between two field along a specified direction
Given a distance (could be any array, from X,Y) -> the weight of F1 increase from the origin, while F2 decreases.
This function has been conceived for averaging the solution of McKenzie and half space cooling models, but it can be used to smooth the temperature field from continent ocean:
- Select the boundary to apply;
- transform the coordinate such that dist represent the perpendicular direction along which you want to apply this smoothening and in a such way that 0.0 is the point in which the weight of F1 is equal to 0.0;
- Select the points that belongs to this area
- compute the thermal fields {F1} {F2}
- then modify F.
GeophysicalModelGenerator.compute_thermal_structure
— Methodcompute_thermal_structure(Temp, X, Y, Z, Phase, s::McKenzie_subducting_slab)
Compute the temperature field of a McKenzie_subducting_slab
. Uses the analytical solution of McKenzie (1969) ["Speculations on the consequences and causes of plate motions"]. The functions assumes that the bottom of the slab is the coordinate Z=0. Internally the function shifts the coordinate.
Parameters
=============================
Temp
: Temperature arrayX
: X ArrayY
: Y ArrayZ
: Z ArrayPhase
: Phase arrays
:McKenzie_subducting_slab
GeophysicalModelGenerator.convert2CartData
— Methodconvert2CartData(d::GeoData, proj::ProjectionPoint)
Converts a GeoData
structure to a CartData
structure, which essentially transfers the dimensions to km
GeophysicalModelGenerator.convert2CartData
— Methodconvert2CartData(d::UTMData, proj::ProjectionPoint)
Converts a UTMData
structure to a CartData
structure, which essentially transfers the dimensions to km
GeophysicalModelGenerator.convert2FEData
— Methodfe_data::FEData = convert2FEData(d::Q1Data)
Creates a Q1 FEM mesh from the Q1Data
data which holds the vertex coordinates and cell/vertex fields
GeophysicalModelGenerator.convert2UTMzone
— Methodconvert2UTMzone(d::CartData, proj::ProjectionPoint)
This transfers a CartData
dataset to a UTMData
dataset, that has a single UTM zone. The point around which we project is ProjectionPoint
GeophysicalModelGenerator.convert2UTMzone
— Methodconvert2UTMzone(d::GeoData, p::ProjectionPoint)
Converts a GeoData
structure to fixed UTM zone, around a given ProjectionPoint
This useful to use real data as input for a cartesian geodynamic model setup (such as in LaMEM). In that case, we need to project map coordinates to cartesian coordinates. One way to do this is by using UTM coordinates. Close to the ProjectionPoint
the resulting coordinates will be rectilinear and distance in meters. The map distortion becomes larger the further you are away from the center.
GeophysicalModelGenerator.coordinate_grids
— MethodX,Y,Z = coordinate_grids(Data::CartData; cell=false)
Returns 3D coordinate arrays
GeophysicalModelGenerator.coordinate_grids
— MethodX,Y,Z = coordinate_grids(Data::CartGrid; cell=false)
Returns 3D coordinate arrays
GeophysicalModelGenerator.coordinate_grids
— MethodLON,LAT,Z = coordinate_grids(Data::GeoData; cell=false)
Returns 3D coordinate arrays
GeophysicalModelGenerator.coordinate_grids
— MethodX,Y,Z = coordinate_grids(Data::LaMEM_grid; cell=false)
Returns 3D coordinate arrays
GeophysicalModelGenerator.coordinate_grids
— MethodX,Y,Z = coordinate_grids(Data::ParaviewData; cell=false)
Returns 3D coordinate arrays
GeophysicalModelGenerator.coordinate_grids
— MethodX,Y,Z = coordinate_grids(Data::Q1Data; cell=false)
Returns 3D coordinate arrays
GeophysicalModelGenerator.coordinate_grids
— MethodEW,NS,Z = coordinate_grids(Data::UTMData; cell=false)
Returns 3D coordinate arrays
GeophysicalModelGenerator.countmap
— MethodDatasetcountMap = countmap(DataSet::GeoData,field::String,stepslon::Int64,stepslat::Int64)
Takes a 2D GeoData struct and counts entries of field
per predefined control area. field
should only consist of 1.0s and 0.0s. The control area is defined by steplon
and steplat
. steplon
is the number of control areas in longitude direction and steplat
the number of control areas in latitude direction. The counts per control area are normalized by the highest count.
julia> Data_Faults = GeoData(Lon3D,Lat3D,Faults,(Faults=Faults,))
GeoData
size : (375, 208, 1)
lon ϵ [ -9.932408319802885 : 34.93985125012068]
lat ϵ [ 35.086096468211394 : 59.919210145128545]
depth ϵ [ 0.0 : 1.0]
fields : (:Faults,)
julia> steplon = 125
julia> steplat = 70
julia> countmap = countmap(Data_Faults,"Faults",steplon,steplat)
GeoData
size : (124, 69, 1)
lon ϵ [ -9.751471789279 : 34.75891471959677]
lat ϵ [ 35.26604656731949 : 59.73926004602028]
depth ϵ [ 0.0 : 1.0]
fields : (:countmap,)
julia
GeophysicalModelGenerator.create_CartGrid
— MethodGrid = create_CartGrid(; size=(), x = nothing, z = nothing, y = nothing, extent = nothing, CharDim = nothing)
Creates a 1D, 2D or 3D cartesian grid of given size. Grid can be created by defining the size and either the extent
(length) of the grid in all directions, or by defining start & end points (x
,y
,z
). If you specify CharDim
(a structure with characteristic dimensions created with GeoParams.jl
), we will nondimensionalize the grd before creating the struct.
Spacing is assumed to be constant in a given direction
This can also be used for staggered grids, as we also create 1D vectors for the central points. The points you indicate in size
are the corner points.
Note: since this is mostly for solid Earth geoscience applications, the second dimension is called z (vertical)
Examples
====
A basic case with non-dimensional units:
julia> Grid = create_CartGrid(size=(10,20),x=(0.,10), z=(2.,10))
Grid{Float64, 2}
size: (10, 20)
length: (10.0, 8.0)
domain: x ∈ [0.0, 10.0], z ∈ [2.0, 10.0]
grid spacing Δ: (1.1111111111111112, 0.42105263157894735)
An example with dimensional units:
julia> CharDim = GEO_units()
julia> Grid = create_CartGrid(size=(10,20),x=(0.0km, 10km), z=(-20km, 10km), CharDim=CharDim)
CartGrid{Float64, 2}
size: (10, 20)
length: (0.01, 0.03)
domain: x ∈ [0.0, 0.01], z ∈ [-0.02, 0.01]
grid spacing Δ: (0.0011111111111111111, 0.0015789473684210528)
GeophysicalModelGenerator.create_partitioning_file
— Methodcreate_partitioning_file(LaMEM_input::String, NumProc::Int64; LaMEM_dir::String=pwd(), LaMEM_options::String="", MPI_dir="", verbose=true)
This executes LaMEM for the input file LaMEM_input
& creates a parallel partitioning file for NumProc
processors. The directory where the LaMEM binary is can be specified; if not it is assumed to be in the current directory. Likewise for the mpiexec
directory (if not specified it is assumed to be available on the command line).
GeophysicalModelGenerator.create_profile_volume!
— Methodcreate_profile_volume!(Profile::ProfileData, VolData::AbstractGeneralGrid; DimsVolCross::NTuple=(100,100), Depth_extent=nothing)
Creates a cross-section through a volumetric 3D dataset VolData
with the data supplied in Profile
. Depth_extent
can be the minimum & maximum depth for vertical profiles
GeophysicalModelGenerator.cross_section
— Methodcross_section(DataSet::AbstractGeneralGrid; dims=(100,100), Interpolate=false, Depth_level=nothing, Lat_level=nothing, Lon_level=nothing, Start=nothing, End=nothing, Depth_extent=nothing, section_width=50km)
Creates a cross-section through a GeoData
object.
- Cross-sections can be horizontal (map view at a given depth), if
Depth_level
is specified - They can also be vertical, either by specifying
Lon_level
orLat_level
(for a fixed lon/lat), or by defining bothStart=(lon,lat)
&End=(lon,lat)
points. - Depending on the type of input data (volume, surface or point data), cross sections will be created in a different manner:
- Volume data: data will be interpolated or directly extracted from the data set.
- Surface data: surface data will be interpolated or directly extracted from the data set
- Point data: data will be projected to the chosen profile. Only data within a chosen distance (default is 50 km) will be used
Interpolate
indicates whether we want to simply extract the data from the data set (default) or whether we want to linearly interpolate it on a new grid, which has dimensions as specified indims
NOTE: THIS ONLY APPLIES TO VOLUMETRIC AND SURFACE DATA SETS- 'section_width' indicates the maximal distance within which point data will be projected to the profile
Example:
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-300:25:0)km);
julia> Data = Depth*2; # some data
julia> Vx,Vy,Vz = ustrip(Data*3),ustrip(Data*4),ustrip(Data*5);
julia> Data_set3D = GeoData(Lon,Lat,Depth,(Depthdata=Data,LonData=Lon, Velocity=(Vx,Vy,Vz)));
julia> Data_cross = cross_section(Data_set3D, Depth_level=-100km)
GeoData
size : (11, 11, 1)
lon ϵ [ 10.0 : 20.0]
lat ϵ [ 30.0 : 40.0]
depth ϵ [ -100.0 km : -100.0 km]
fields: (:Depthdata, :LonData, :Velocity)
GeophysicalModelGenerator.cross_section_points
— Methodfunction cross_section_points(P::GeoData; Depth_level=nothing, Lat_level=nothing, Lon_level=nothing, Start=nothing, End=nothing, section_width=50 )
Creates a projection of separate points (saved as a GeoData object) onto a chosen plane. Only points with a maximum distance of section_width are taken into account
GeophysicalModelGenerator.cross_section_surface
— Methodcrosssectionsurface(Surface::GeoData; dims=(100,), Interpolate=false, Depthlevel=nothing; Latlevel=nothing; Lon_level=nothing; Start=nothing, End=nothing )
Creates a cross-section through a surface (2D) GeoData
object.
Cross-sections can be horizontal (map view at a given depth), if
Depth_level
is specifiedThey can also be vertical, either by specifying
Lon_level
orLat_level
(for a fixed lon/lat), or by defining bothStart=(lon,lat)
&End=(lon,lat)
points. Start and End points will be in km!IMPORTANT: The surface to be extracted has to be given as a gridded GeoData object. It may also contain NaNs where it is not defined. Any points lying outside of the defined surface will be considered NaN.
Example:
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,-50km);
julia> Data = Depth*2; # some data
julia> Vx,Vy,Vz = ustrip(Data*3),ustrip(Data*4),ustrip(Data*5);
julia> Data_set2D = GeoData(Lon,Lat,Depth,(Depth=Depth,));
julia> Data_cross = cross_section_surface(Data_set2D, Lat_level =15)
GeoData
size : (100,)
lon ϵ [ 10.0 : 20.0]
lat ϵ [ 15.0 : 15.0]
depth ϵ [ NaN : NaN]
fields : (:Depth,)
attributes: ["note"]
GeophysicalModelGenerator.cross_section_volume
— Methodcrosssectionvolume(Volume::AbstractGeneralGrid; dims=(100,100), Interpolate=false, Depthlevel=nothing; Latlevel=nothing; Lonlevel=nothing; Start=nothing, End=nothing, Depthextent=nothing )
Creates a cross-section through a volumetric (3D) GeoData
object.
- Cross-sections can be horizontal (map view at a given depth), if
Depth_level
is specified - They can also be vertical, either by specifying
Lon_level
orLat_level
(for a fixed lon/lat), or by defining bothStart=(lon,lat)
&End=(lon,lat)
points. - When both
Start=(lon,lat)
&End=(lon,lat)
are given, one can also provide a the depth extent of the profile by providing Depthextent=(depthmin,depth_max) Interpolate
indicates whether we want to simply extract the data from the 3D volume (default) or whether we want to linearly interpolate it on a new grid, which has dimensions as specified indims
Depth_extent
is an optional parameter that can indicate the depth extent over which you want to interpolate the vertical cross-section. Default is the full vertical extent of the 3D dataset
Example:
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-300:25:0)km);
julia> Data = Depth*2; # some data
julia> Vx,Vy,Vz = ustrip(Data*3),ustrip(Data*4),ustrip(Data*5);
julia> Data_set3D = GeoData(Lon,Lat,Depth,(Depthdata=Data,LonData=Lon, Velocity=(Vx,Vy,Vz)));
julia> Data_cross = cross_section_volume(Data_set3D, Depth_level=-100km)
GeoData
size : (11, 11, 1)
lon ϵ [ 10.0 : 20.0]
lat ϵ [ 30.0 : 40.0]
depth ϵ [ -100.0 km : -100.0 km]
fields: (:Depthdata, :LonData, :Velocity)
GeophysicalModelGenerator.distance_to_linesegment
— Methoddistance_to_linesegment(p::NTuple{2,_T}, v::NTuple{2,_T}, w::NTuple{2,_T})
Computes the distance normal distance from a point p
to a line segment defined by the points v
and w
.
GeophysicalModelGenerator.download_data
— Functiondownload_data(url::String, local_filename="temp.dat"; dir=pwd(), maxattempts=5 )
Downloads a remote dataset with name url
from a remote location and saves it to the current directory. If download fails, we make maxattempts
attempts before giving up.
Example
julia> url = "https://seafile.rlp.net/f/10f867e410bb4d95b3fe/?dl=1";
julia> download_data(url)
"/Users/kausb/.julia/dev/GeophysicalModelGenerator/temp.dat"
GeophysicalModelGenerator.drape_on_topo
— Methoddrape_on_topo(Topo::CartData, Data::CartData)
Drapes Cartesian Data on topography
GeophysicalModelGenerator.drape_on_topo
— MethodTopo = drape_on_topo(Topo::GeoData, Data::GeoData)
This drapes fields of a data set Data
on the topography Topo
GeophysicalModelGenerator.extract_ProfileData!
— Functionextract_ProfileData!(Profile::ProfileData,VolData::GeoData, SurfData::NamedTuple, PointData::NamedTuple; DimsVolCross=(100,100),Depth_extent=nothing,DimsSurfCross=(100,),section_width=50)
Extracts data along a vertical or horizontal profile
GeophysicalModelGenerator.extract_ProfileData
— Methodextract_ProfileData(ProfileCoordFile::String,ProfileNumber::Int64,DataSetFile::String; DimsVolCross=(100,100),DepthVol=nothing,DimsSurfCross=(100,),WidthPointProfile=50km)
This is a convenience function (mostly for backwards compatibility with the MATLAB GUI) that loads the data from file & projects it onto a profile
GeophysicalModelGenerator.extract_subvolume
— Methodextract_subvolume(V::CartData; Interpolate=false, X_level=nothing, Y_level=nothing, Z_level=nothing, dims=(50,50,50))
Extract or "cuts-out" a piece of a 2D or 3D GeoData set, defined by Lon
, Lat
and Depth
coordinates.
This is useful if you are only interested in a part of a much bigger larger data set.
Lon_level
,Lat_level
andDepth_level
should be tuples that indicate(minimum_value, maximum_value)
along the respective direction. If not specified we use the full range.- By default,
Interpolate=false
and we find the closest indices within the data set (so your new data set will not go exactly from minimum to maximum). - Alternatively, if
Interpolate=true
we interpolate the data onto a new grid that has dimensionsdims
. This can be useful to compare data sets that are originally given in different resolutions.
3D Example with no interpolation:
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-300:25:0)km);
julia> Data = Depth*2; # some data
julia> Vx,Vy,Vz = ustrip(Data*3),ustrip(Data*4),ustrip(Data*5);
julia> Data_set3D = GeoData(Lon,Lat,Depth,(Depthdata=Data,LonData=Lon, Velocity=(Vx,Vy,Vz)))
GeoData
size : (11, 11, 13)
lon ϵ [ 10.0 : 20.0]
lat ϵ [ 30.0 : 40.0]
depth ϵ [ -300.0 km : 0.0 km]
fields: (:Depthdata, :LonData, :Velocity)
julia> Data_extracted = extract_subvolume(Data_set3D,Lon_level=(10,12),Lat_level=(35,40))
GeoData
size : (3, 6, 13)
lon ϵ [ 10.0 : 12.0]
lat ϵ [ 35.0 : 40.0]
depth ϵ [ -300.0 km : 0.0 km]
fields: (:Depthdata, :LonData, :Velocity)
By default it extracts the data points closest to the area defined by Lonlevel/Latlevel/Depth_level.
2D Example along a cross-section through 3D data:
julia> X,Y,Z = xyz_grid(10:20,30:40,-300:25:0);
julia> Data = Z.*2
julia> Data_Int = Int64.(Data)
julia> DataSet_Cart = CartData(X,Y,Z,(Data=Data,Data_Int=Data_Int, Velocity=(X,Y,Z)))
julia> Data_cross = cross_section(DataSet_Cart, Start=(11.0,35), End=(19, 39.0))
CartData
size : (100, 100, 1)
x ϵ [ 11.0 : 19.0]
y ϵ [ 35.0 : 39.0]
z ϵ [ -300.0 : 0.0]
fields : (:Data, :Data_Int, :Velocity, :FlatCrossSection)
attributes: ["note"]
julia> Data_extracted = extract_subvolume(Data_cross, X_level=(1,7), Z_level=(-200,-100))
CartData
size : (50, 50, 1)
x ϵ [ 11.894427190999917 : 17.260990336999413]
y ϵ [ 35.44721359549995 : 38.130495168499706]
z ϵ [ -200.0 : -100.0]
fields : (:FlatCrossSection, :Data, :Data_Int, :Velocity)
attributes: ["note"]
julia> typeof(Data_extracted.fields.Data_Int)
Array{Int64, 3}
GeophysicalModelGenerator.extract_subvolume
— Methodextract_subvolume(V::GeoData; Interpolate=false, Lon_level=nothing, Lat_level=nothing, Depth_level=nothing, dims=(50,50,50))
Extract or "cuts-out" a piece of a 2D or 3D GeoData set, defined by Lon
, Lat
and Depth
coordinates.
This is useful if you are only interested in a part of a much bigger larger data set.
Lon_level
,Lat_level
andDepth_level
should be tuples that indicate(minimum_value, maximum_value)
along the respective direction. If not specified we use the full range.- By default,
Interpolate=false
and we find the closest indices within the data set (so your new data set will not go exactly from minimum to maximum). - Alternatively, if
Interpolate=true
we interpolate the data onto a new grid that has dimensionsdims
. This can be useful to compare data sets that are originally given in different resolutions.
3D Example with no interpolation:
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-300:25:0)km);
julia> Data = Depth*2; # some data
julia> Vx,Vy,Vz = ustrip(Data*3),ustrip(Data*4),ustrip(Data*5);
julia> Data_set3D = GeoData(Lon,Lat,Depth,(Depthdata=Data,LonData=Lon, Velocity=(Vx,Vy,Vz)))
GeoData
size : (11, 11, 13)
lon ϵ [ 10.0 : 20.0]
lat ϵ [ 30.0 : 40.0]
depth ϵ [ -300.0 km : 0.0 km]
fields: (:Depthdata, :LonData, :Velocity)
julia> Data_extracted = extract_subvolume(Data_set3D,Lon_level=(10,12),Lat_level=(35,40))
GeoData
size : (3, 6, 13)
lon ϵ [ 10.0 : 12.0]
lat ϵ [ 35.0 : 40.0]
depth ϵ [ -300.0 km : 0.0 km]
fields: (:Depthdata, :LonData, :Velocity)
By default it extracts the data points closest to the area defined by Lonlevel/Latlevel/Depth_level.
3D Example with interpolation:
Alternatively, you can also interpolate the data onto a new grid:
julia> Data_extracted = extract_subvolume(Data_set3D,Lon_level=(10,12),Lat_level=(35,40), Interpolate=true, dims=(50,51,52))
GeoData
size : (50, 51, 52)
lon ϵ [ 10.0 : 12.0]
lat ϵ [ 35.0 : 40.0]
depth ϵ [ -300.0 km : 0.0 km]
fields: (:Depthdata, :LonData, :Velocity)
GeophysicalModelGenerator.find_slab_distance!
— Methodfind_slab_distance!(ls, d, X,Y,Z, trench::Trench)
Function that finds the perpendicular distance to the top and bottom of the slab d
, and the current length of the slab l
.
GeophysicalModelGenerator.fit_surface_to_points
— Methodsurf_new = fit_surface_to_points(surf::CartData, lon_pt::Vector, lat_pt::Vector, depth_pt::Vector)
This fits the depth
values of the surface surf
to the depth
value of the closest-by-points in (lon_pt
,lat_pt
, depth_pt
)
GeophysicalModelGenerator.fit_surface_to_points
— Methodsurf_new = fit_surface_to_points(surf::GeoData, lon_pt::Vector, lat_pt::Vector, depth_pt::Vector)
This fits the depth
values of the surface surf
to the depth
value of the closest-by-points in (lon_pt
,lat_pt
, depth_pt
)
GeophysicalModelGenerator.flatten_cross_section
— Methodflatten_cross_section(V::CartData)
Takes a diagonal 3D crosssection and flattens it to be converted to a 2D Grid by createCartGrid
Example
Grid = create_CartGrid(size=(100,100,100), x=(0.0km, 99.9km), y=(-10.0km, 20.0km), z=(-40km,4km));
X,Y,Z = xyz_grid(Grid.coord1D...);
DataSet = CartData(X,Y,Z,(Depthdata=Z,));
Data_Cross = cross_section(DataSet, dims=(100,100), Interpolate=true, Start=(ustrip(Grid.min[1]),ustrip(Grid.max[2])), End=(ustrip(Grid.max[1]), ustrip(Grid.min[2])))
x_new = flatten_cross_section(Data_Cross)
# This flattened cross_section can be added to original Data_Cross by addfield()
Data_Cross = addfield(Data_Cross,"FlatCrossSection", x_new)
CartData
size : (100, 100, 1)
x ϵ [ 0.0 : 99.9]
y ϵ [ -10.0 : 20.0]
z ϵ [ -40.0 : 4.0]
fields : (:Depthdata, :FlatCrossSection)
attributes: ["note"]
GeophysicalModelGenerator.flatten_cross_section
— Methodflatten_cross_section(V::GeoData)
This function takes a 3D cross section through a GeoData structure and computes the distance along the cross section for later 2D processing/plotting
```julia-repl
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-300:25:0)km);
julia> Data = Depth*2; # some data
julia> Vx,Vy,Vz = ustrip(Data*3),ustrip(Data*4),ustrip(Data*5);
julia> Data_set3D = GeoData(Lon,Lat,Depth,(Depthdata=Data,LonData=Lon, Velocity=(Vx,Vy,Vz)));
julia> Data_cross = cross_section(Data_set3D, Start=(10,30),End=(20,40))
julia> x_profile = flatten_cross_section(Data_cross)
julia> Data_cross = addfield(Data_cross,"x_profile",x_profile)
```
GeophysicalModelGenerator.flatten_index_dimensions
— Methodind2D = flatten_index_dimensions(Phase, ind_vec::Vector{CartesianIndex{3}})
This converts the indices to purely 2D indices if the array phase
is 2D
GeophysicalModelGenerator.flatten_index_dimensions
— Methodind2D = flatten_index_dimensions(Phase, ind_vec::Vector{CartesianIndex{3}})
This converts the indices to purely 2D indices if the array phase
is 2D
GeophysicalModelGenerator.flip
— FunctionData = flip(Data::GeoData, dimension=3)
This flips the data in the structure in a certain dimension (default is z [3])
GeophysicalModelGenerator.get_processor_partitioning
— MethodnProcX,nProcY,nProcZ, xc,yc,zc, nNodeX,nNodeY,nNodeZ = get_processor_partitioning(filename; is64bit=false)
Reads a LaMEM processor partitioning file, used to create marker files, and returns the parallel layout. By default this is done for a 32bit PETSc installation, which will fail if you actually use a 64bit version.
GeophysicalModelGenerator.getlonlatdepthmag_QuakeML
— MethodData = getlonlatdepthmag_QuakeML(filename::String)
Extracts longitude, latitude, depth and magnitude from a QuakeML file that has been e.g. downloaded from ISC. The data is then returned in GeoData format.
GeophysicalModelGenerator.inpoly
— Methodinpoly(PolyX::Vector, PolyY::Vector, x::Number, y::Number, iSteps::Vector, jSteps::)
Checks if a point given by x and y is in or on (both cases return true) a polygon given by PolyX and PolyY, iSteps and jSteps provide the connectivity between the polygon edges. This function should be used through inpolygon!().
GeophysicalModelGenerator.inpoly_fast
— Methodinpoly_fast(PolyX::Vector, PolyY::Vector, x::Number, y::Number, iSteps::Vector, jSteps::)
Faster version of inpoly() but will miss some points that are on the edge of the polygon.
GeophysicalModelGenerator.inpolygon!
— Methodinpolygon!(INSIDE::Matrix, PolyX::Vector, PolyY::Vector, X::Matrix, Y::Matrix; fast=false)
Checks if points given by matrices X
and Y
are in or on (both cases return true) a polygon given by PolyX
and PolyY
. Boolean fast
will trigger faster version that may miss points that are exactly on the edge of the polygon. Speedup is a factor of 3.
GeophysicalModelGenerator.inpolygon!
— Methodinpolygon!(inside::Vector, PolyX::Vector, PolyY::Vector, x::Vector, y::Vector; fast=false)
Same as above but inside
, X
and Y
and are vectors.
GeophysicalModelGenerator.interpolate_data_fields_cross_section
— Methodinterpolate_data_fields_cross_section(V::CartData, X,Y,Z,Xcross)
Interpolates data fields along a cross-section defined by Xcross
and Z
GeophysicalModelGenerator.interpolate_data_surface
— MethodSurf_interp = interpolate_data_surface(V::GeoData, Surf::GeoData)
Interpolates a 3D data set V
on a surface defined by Surf
GeophysicalModelGenerator.interpolate_data_surface
— MethodSurf_interp = interpolate_data_surface(V::ParaviewData, Surf::ParaviewData)
Interpolates a 3D data set V
on a surface defined by Surf
.
Example
julia> Data
ParaviewData
size : (33, 33, 33)
x ϵ [ -3.0 : 3.0]
y ϵ [ -2.0 : 2.0]
z ϵ [ -2.0 : 0.0]
fields: (:phase, :density, :visc_total, :visc_creep, :velocity, :pressure, :temperature, :dev_stress, :strain_rate, :j2_dev_stress, :j2_strain_rate, :plast_strain, :plast_dissip, :tot_displ, :yield, :moment_res, :cont_res)
julia> surf
ParaviewData
size : (96, 96, 1)
x ϵ [ -2.9671875 : 3.2671875]
y ϵ [ -1.9791666666666667 : 1.9791666666666667]
z ϵ [ -1.5353766679763794 : -0.69925457239151]
fields: (:Depth,)
julia> Surf_interp = interpolate_data_surface(Data, surf)
ParaviewData
size : (96, 96, 1)
x ϵ [ -2.9671875 : 3.2671875]
y ϵ [ -1.9791666666666667 : 1.9791666666666667]
z ϵ [ -1.5353766679763794 : -0.69925457239151]
fields: (:phase, :density, :visc_total, :visc_creep, :velocity, :pressure, :temperature, :dev_stress, :strain_rate, :j2_dev_stress, :j2_strain_rate, :plast_strain, :plast_dissip, :tot_displ, :yield, :moment_res, :cont_res)
GeophysicalModelGenerator.interpolate_datafields
— MethodData_interp = interpolate_datafields(V::AbstractGeneralGrid, Lon, Lat, Depth)
Interpolates a data field V
on a grid defined by Lon,Lat,Depth
Example
julia> x = 0:2:10
julia> y = -5:5
julia> z = -10:2:2
julia> X,Y,Z = xyz_grid(x, y, z);
julia> Data = Z
julia> Data_set1= CartData(X,Y,Z, (FakeData=Data,Data2=Data.+1.))
CartData
size : (6, 11, 7)
x ϵ [ 0.0 km : 10.0 km]
y ϵ [ -5.0 km : 5.0 km]
z ϵ [ -10.0 km : 2.0 km]
fields : (:FakeData, :Data2)
attributes: ["note"]
julia> X,Y,Z = xyz_grid(0:4:10, -1:.1:1, -5:.1:1 );
julia> Data_set2= interpolate_datafields(Data_set1, X,Y,Z)
GeophysicalModelGenerator.interpolate_datafields
— Methodinterpolate_datafields(V::UTMData, EW, NS, Depth)
Interpolates a data field V
on a grid defined by UTM,Depth
GeophysicalModelGenerator.interpolate_datafields_2D
— Methodinterpolate_datafields_2D(V::CartData, X, Y)
Interpolates a data field V
on a 2D CartData grid defined by X
,Y
. Typically used for horizontal surfaces
GeophysicalModelGenerator.interpolate_datafields_2D
— Methodinterpolate_datafields_2D(Original::CartData, New::CartData; Rotate=0.0, Translate=(0,0,0), Scale=(1.0,1.0,1.0))
Interpolates a data field Original
on a 2D CartData grid New
. Typically used for horizontal surfaces.
Note: Original
should have orthogonal coordinates. If it has not, e.g., because it was rotated, you'll have to specify the angle Rotate
that it was rotated by
GeophysicalModelGenerator.interpolate_datafields_2D
— MethodSurf_interp = interpolate_datafields_2D(V::GeoData, x::AbstractRange, y::AbstractRange; Lat::Number, Lon::Number)
Interpolates a 3D data set V
with a projection point proj=(Lat, Lon)
on a plane defined by x
and y
, where x
and y
are uniformly spaced. Returns the 2D array Surf_interp
.
GeophysicalModelGenerator.interpolate_datafields_2D
— Methodinterpolate_datafields_2D(V::GeoData, Lon, Lat)
Interpolates a data field V
on a 2D grid defined by Lon,Lat
. Typically used for horizontal surfaces
GeophysicalModelGenerator.interpolate_datafields_2D
— Methodinterpolate_datafields_2D(Original::GeoData, New::GeoData; Rotate=0.0, Translate=(0,0,0), Scale=(1.0,1.0,1.0))
Interpolates a data field Original
on a 2D GeoData grid New
. Typically used for horizontal surfaces.
Note: Original
should have orthogonal coordinates. If it has not, e.g., because it was rotated, you'll have to specify the angle Rotate
that it was rotated by
GeophysicalModelGenerator.interpolate_datafields_2D
— Methodinterpolate_datafields_2D(V::UTMData, EW, NS)
Interpolates a data field V
on a 2D grid defined by UTM
. Typically used for horizontal surfaces
GeophysicalModelGenerator.is_surface
— Methodissurf = is_surface(surf::AbstractGeneralGrid)
Returns true if surf
is a horizontal 3D surface.
GeophysicalModelGenerator.isinside_closed_STL
— Functioninside = isinside_closed_STL(mesh::Mesh, Pt, eps=1e-3)
Determine whether a point Pt
is inside a 3D closed triangular *.stl
surface or not.
This implements the winding number method, following the python code: https://github.com/marmakoide/inside-3d-mesh
This again is described in the following paper by Alec Jacobson, Ladislav Kavan and Olga Sorkine-Hornung.
GeophysicalModelGenerator.lithostatic_pressure!
— Methodlithostatic_pressure!(Plithos::Array, Density::Array, dz::Number; g=9.81)
Computes lithostatic pressure from a 3D density array, assuming constant soacing dz
in vertical direction. Optionally, the gravitational acceleration g
can be specified.
GeophysicalModelGenerator.load_GMG
— Functionload_GMG(filename::String, dir=pwd(); maxattempts=5)
Loads a GeoData
/CartData
/UTMData
data set from jld2 file filename
Note: the filename
can also be a remote url
, in which case we first download that file to a temporary directory before opening it. We make maxattempts
attempts to download it before giving up.
Example 1 - Load local file
julia> data = load_GMG("test")
GeoData
size : (4, 3, 3)
lon ϵ [ 1.0 : 10.0]
lat ϵ [ 11.0 : 19.0]
depth ϵ [ -20.0 : -10.0]
fields : (:DataFieldName,)
attributes: ["note"]
Example 2 - remote download
julia> url = "https://seafile.rlp.net/f/10f867e410bb4d95b3fe/?dl=1"
julia> load_GMG(url)
GeoData
size : (149, 242, 1)
lon ϵ [ -24.875 : 35.375]
lat ϵ [ 34.375 : 71.375]
depth ϵ [ -11.76 : -34.7]
fields : (:MohoDepth,)
attributes: ["author", "year"]
GeophysicalModelGenerator.load_GMG
— Methoddata::NamedTuple = load_GMG(data::GMG_Dataset)
Loads a dataset specified in GMG_Dataset data
and returns it as a named tuple
GeophysicalModelGenerator.load_GMG
— MethodData = load_GMG(Datasets::Vector{GMG_Dataset})
This loads all the active datasets in Datasets
, and returns a NamedTuple with Volume, Surface, Point, Screenshot and Topography data
GeophysicalModelGenerator.load_dataset_file
— MethodDatasets = load_dataset_file(file_datasets::String)
This loads a CSV textfile that lists datasets, which is expected to have the following format:
Name
,Location
,Type
,[Active]
- AlpArray,./Seismicity/ALPARRAY/AlpArraySeis.jld2,Point, true
- Plomerova2022,https://seafile.rlp.net/f/abccb8d3302b4ef5af17/?dl=1,Volume
Note that the first line of the file is skipped.
Here, the meaning of the variables is:
Name
: The name of the dataset to be loadedLocation
: the location of the file (directory and filename) on your local machine, or an url where we can download the file from the web. The url is expected to start with "http".Type
: type of the dataset (Volume, Surface, Point, Screenshot)Active
: Do we want this file to be loaded or not? Optional parameter that defaults totrue
GeophysicalModelGenerator.lonlatdepth_grid
— MethodLon, Lat, Depth = lonlatdepth_grid(Lon::Any, Lat::Any, Depth:Any)
Creates 3D arrays of Lon
, Lat
, Depth
from 1D vectors or numbers
Example 1: Create 3D grid
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-10:-1)km);
julia> size(Lon)
(11, 11, 10)
Example 2: Create 2D lon/lat grid @ a given depth
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,-50km);
julia> size(Lon)
(11, 11)
Example 3: Create 2D lon/depth grid @ a given lat
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30,(-10:-1)km);
julia> size(Lon)
(11, 11)
Example 4: Create 1D vertical line @ a given lon/lat point
julia> Lon,Lat,Depth = lonlatdepth_grid(10,30,(-10:-1)km);
julia> size(Lon)
(10, )
GeophysicalModelGenerator.make_paraview_collection
— Methodmake_paraview_collection(; dir=pwd(), pvd_name=nothing, files=nothing, file_extension = ".vts", time = nothing)
In case one has a list of *.vtk
files, this routine creates a *.pvd
file that can be opened in Paraview. This is useful if you previously saved vtk files but didnt save it as a collection in the code itself.
Optional options
dir
: directory where the*.vtk
are stored.pvd_name
: filename of the resulting*.pvd
file without extension; if not specified,full_simulation
is used.files
: Vector of the*.vtk
files without extension; if not specified, all*.vtk
files in the directory are used.file_extension
: file extension of the vtk files. Default is.vts
but allvt*
work.time
: Vector of the timesteps; if not specified, pseudo time steps are assigned.
GeophysicalModelGenerator.make_volc_topo
— Methodmakevolctopo(Grid::LaMEM_grid; center::Array{Float64, 1}, height::Float64, radius::Float64, crater::Float64, base=0.0m, background=nothing)
Creates a generic volcano topography (cones and truncated cones)
Parameters
- Grid - LaMEM grid (created by readLaMEMinputfile)
- center - x- and -coordinates of center of volcano
- height - height of volcano
- radius - radius of volcano
Optional Parameters
- crater - this will create a truncated cone and the option defines the radius of the flat top
- base - this sets the flat topography around the volcano
- background - this allows loading in a topography and only adding the volcano on top (also allows stacking of several cones to get a volcano with different slopes)
Example
Cylinder with constant phase and temperature:
julia> Grid = read_LaMEM_inputfile("test_files/SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
julia> Topo = make_volc_topo(Grid, center=[0.0,0.0], height=0.4, radius=1.5, crater=0.5, base=0.1)
CartData
size : (33, 33, 1)
x ϵ [ -3.0 : 3.0]
y ϵ [ -2.0 : 2.0]
z ϵ [ 0.1 : 0.4]
fields : (:Topography,)
attributes: ["note"]
julia> Topo = make_volc_topo(Grid, center=[0.0,0.0], height=0.8, radius=0.5, crater=0.0, base=0.4, background=Topo.fields.Topography)
CartData
size : (33, 33, 1)
x ϵ [ -3.0 : 3.0]
y ϵ [ -2.0 : 2.0]
z ϵ [ 0.1 : 0.8]
fields : (:Topography,)
attributes: ["note"]
julia> write_paraview(Topo,"VolcanoTopo") # Save topography to paraview
Saved file: VolcanoTopo.vts
GeophysicalModelGenerator.meshgrid
— Methodmeshgrid(vx,vy,vz)
Computes an (x,y,z)-grid from the vectors (vx,vy,vz). For more information, see the MATLAB documentation.
GeophysicalModelGenerator.movie_from_images
— Methodmovie_from_images(; dir=pwd(), file=nothing, outfile=nothing, framerate=10, copy_to_current_dir=true, type=:mp4_default, collect=true)
The typical way to create animations with Paraview
is to use the Save Animation
option to save a series of *.png
images.
This function combines these images to an *.mp4
movie.
Optional options
dir
: directory where the images are stored.file
: filename of the image series without extension and numbers. Required if >1 image series is stored in the same directory. By default we reconstruct this name from the available files.outfile
: filename of the resulting movie without extension; if not specified,file
is used.framerate
: number of frames/second.copy_to_current_dir
: copies the final movie to the current directory iftrue
(default); otherwise it will be stored indir
.type
: type of movie that is created; possible options are::mp4_default
: Default option that saves a well-compressedmp4
movie that works well for us on ipad and embedded in a powerpoint presentation.:mov_hires
: Higher-resolution quicktime movie (larger filesize & not compatible with windows)
collect
: suppresses output ofFFMPEG
iftrue
(default).
GeophysicalModelGenerator.movie_paraview
— Methodpvd = movie_paraview(; name="Movie", pvd=pvd, Finalize::Bool=false, Initialize::Bool=true)
If you want to make a movie of your data set, you can use this routine to initialize and to finalize the movie-file. It will create a *.pvd
file, which you can open in Paraview
Individual timesteps are added to the movie by passing pvd
and the time of the timestep to the write_paraview
routine.
Example
Usually this is used inside a *.jl
script, as in this pseudo-example:
movie = movie_paraview(name="Movie", Initialize=true)
for itime=1:10
name = "test"*string(itime)
movie = write_paraview(Data, name, pvd=movie, time=itime)
end
movie_paraview(pvd=movie, Finalize=true)
GeophysicalModelGenerator.nearest_point_indices
— Methodind = nearest_point_indices(X::Array,Y::Array,Z::Array, X_pt::Vector,Y_pt::Vector,Z_pt::Vector)
Returns the index of the nearest point in (X_pt
,Y_pt
,Z_pt
) to (X
,Y
,Z
) and returns the index
GeophysicalModelGenerator.nearest_point_indices
— Methodind = nearest_point_indices(X::Array,Y::Array, X_pt::Vector, Y_pt::Vector)
Returns the index of the nearest point in (X_pt
,Y_pt
) to (X
,Y
) and returns the index
GeophysicalModelGenerator.nearest_point_indices
— Methodind = nearest_point_indices(X::Array, X_pt::Vector)
Returns the index of the nearest point in (X_pt
) to (X
) and returns the index
GeophysicalModelGenerator.parse_columns_CSV
— Methodparse_columns_CSV(data_file, num_columns)
This parses numbers from CSV file that is read in with CSV.File
. That is useful in case the CSV files has tables that contain both strings (e.g., station names) and numbers (lat/lon/height) and you are only interested in the numbers
Example
This example assumes that the data starts at line 18, that the columns are separated by spaces, and that it contains at most 4 columns with data:
julia> using CSV
julia> data_file = CSV.File("FileName.txt",datarow=18,header=false,delim=' ')
julia> data = parse_columns_CSV(data_file, 4)
GeophysicalModelGenerator.point_in_tetrahedron
— Methodinside = point_in_tetrahedron(p::_T, a::_T, b::_T, c::_T, d::_T, tol=1e-10)
Determines if a point p
is inside a tetrahedron specified by a
,b
,c
,d
or not
GeophysicalModelGenerator.point_to_nearest_grid
— Methodcount = point_to_nearest_grid(pt_x,pt_y,pt_z, X,Y,Z; radius_factor=1)
This uses nearest neighbour interpolation to count how many points (given by pt_x
,pt_y
,pt_z
coordinate vectors) are in the vicinity of 3D grid point specified by X
,Y
,Z
3D coordinate arrays, with regular spacing (Δx,Δy,Δz)
. The search radius is R=radius_factor*(Δx² + Δy² + Δz²)^(1/3)
GeophysicalModelGenerator.point_to_nearest_grid
— MethodGrid_counts = point_to_nearest_grid(pt_x,pt_y,pt_z, Grid::CartData; radius_factor=1)
Uses nearest neighbour interpolation to count how many points (given by pt_x
,pt_y
,pt_z
coordinate vectors) are in the vicinity of 3D CartGrid
specified by Grid
. The search radius is R=radius_factor*(Δx² + Δy² + Δz²)^(1/3)
Grid_counts
is Grid
but with an additional field Count
that has the number of hits
GeophysicalModelGenerator.point_to_nearest_grid
— MethodGrid_counts = point_to_nearest_grid(pt_x,pt_y,pt_z, Grid::GeoData; radius_factor=1)
Uses nearest neighbour interpolation to count how many points (given by pt_x
,pt_y
,pt_z
coordinate vectors) are in the vicinity of 3D GeoData
specified by Grid
. The search radius is R=radius_factor*(Δx² + Δy² + Δz²)^(1/3)
Grid_counts
is Grid
but with an additional field Count
that has the number of hits
GeophysicalModelGenerator.point_to_nearest_grid
— MethodGrid_counts = point_to_nearest_grid(Point::CartData, Grid::CartData; radius_factor=1)
Uses nearest neighbour interpolation to count how many points (given by Point
) are in the vicinity of a 3D Grid
. The search radius is R=radius_factor*(Δx² + Δy² + Δz²)^(1/3)
Point
should have 1D coordinate vectors
Grid_counts
is Grid
but with an additional field Count
that has the number of hits
GeophysicalModelGenerator.point_to_nearest_grid
— MethodGrid_counts = point_to_nearest_grid(Point::GeoData, Grid::GeoData; radius_factor=1)
Uses nearest neighbour interpolation to count how many points (given by Point
) are in the vicinity of a 3D Grid
. The search radius is R=radius_factor*(Δx² + Δy² + Δz²)^(1/3)
Point
should have 1D coordinate vectors
Grid_counts
is Grid
but with an additional field Count
that has the number of hits
GeophysicalModelGenerator.project_CartData
— Methodd_cart = project_CartData(d_cart::CartData, d::GeoData, p::ProjectionPoint)
Projects all datafields from the GeoData struct d
to the CartData struct d_cart
, around the projection point p
. d_cart
must be an orthogonal cartesian grid (deformed doesn't work; use convert2CartData(d, proj)
, where proj
is a projection point in that case).
Note:
- If
d_cart
andd
are horizontal surfaces (3rd dimension has size==1), it also interpolates the depth coordinate.
GeophysicalModelGenerator.project_CartData
— Methodd_cart = project_CartData(d_cart::CartData, d::GeoData, p::ProjectionPoint)
Projects all datafields from the GeoData struct d
to the CartData struct d_cart
, around the projection point p
. d_cart
must be an orthogonal cartesian grid (deformed doesn't work; use convert2CartData(d, proj)
, where proj
is a projection point in that case).
Note:
- If
d_cart
andd
are horizontal surfaces (3rd dimension has size==1), it also interpolates the depth coordinate.
GeophysicalModelGenerator.project_CartData
— Methodd_cart = project_CartData(d_cart::CartData, d::UTMData, p::ProjectionPoint)
Projects all datafields from the UTMData struct d
to the CartData struct d_cart
, around the projection point p
. d_cart
must be an orthogonal cartesian grid (deformed doesn't work; use convert2CartData(d, proj)
, where proj
is a projection point in that case).
# Note:
- If `d_cart` and `d` are horizontal surfaces (3rd dimension has size==1), it also interpolates the depth coordinate.
GeophysicalModelGenerator.project_FEData_CartData
— Methoddata_cart = project_FEData_CartData(data_cart::CartData, data_fe::FEData)
Projects a FEData object with tetrahedrons (e.g., from Gmsh) to a Cartesian grid
GeophysicalModelGenerator.read_ASAGI
— Methoddata::CartData = read_ASAGI(fname_asagi::String)
This reads a 3D ASAGI NetCDF file, which is used as input for a number of codes such as SeisSol. It returns a CartData dataset
GeophysicalModelGenerator.read_LaMEM_inputfile
— MethodGrid::LaMEM_grid = read_LaMEM_inputfile(file, args::Union{String,Nothing}=nothing)
Parses a LaMEM input file and stores grid information in the Grid
structure. Optionally, you can pass LaMEM command-line arguments as well.
Example 1
julia> Grid = read_LaMEM_inputfile("SaltModels.dat")
LaMEM Grid:
nel : (32, 32, 32)
marker/cell : (3, 3, 3)
markers : (96, 96, 96)
x ϵ [-3.0 : 3.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
Example 2 (with command-line arguments)
julia> Grid = read_LaMEM_inputfile("SaltModels.dat", args="-nel_x 64 -coord_x -4,4")
LaMEM Grid:
nel : (64, 32, 32)
marker/cell : (3, 3, 3)
markers : (192, 96, 96)
x ϵ [-4.0 : 4.0]
y ϵ [-2.0 : 2.0]
z ϵ [-2.0 : 0.0]
GeophysicalModelGenerator.read_data_PVTR
— MethodData::ParaviewData = read_data_PVTR(fname, dir)
Reads a parallel, rectilinear, *.vts
file with the name fname
and located in dir
and create a 3D Data
struct from it.
Example
julia> Data = read_data_PVTR("Haaksbergen.pvtr", "./Timestep_00000005_3.35780500e-01/")
ParaviewData
size : (33, 33, 33)
x ϵ [ -3.0 : 3.0]
y ϵ [ -2.0 : 2.0]
z ϵ [ -2.0 : 0.0]
fields: (:phase, :density, :visc_total, :visc_creep, :velocity, :pressure, :temperature, :dev_stress, :strain_rate, :j2_dev_stress, :j2_strain_rate, :plast_strain, :plast_dissip, :tot_displ, :yield, :moment_res, :cont_res)
GeophysicalModelGenerator.read_data_VTR
— Methodcoord, Data_3D_Arrays, Name_Vec = read_data_VTR(fname)
Reads a VTR (structured grid) VTK file fname
and extracts the coordinates, data arrays and names of the data. In general, this only contains a piece of the data, and one should open a *.pvtr
file to retrieve the full data
GeophysicalModelGenerator.read_picked_profiles
— MethodThis reads the picked profiles from disk and returns a vector of ProfileData
GeophysicalModelGenerator.remove_NaN_surface!
— Methodremove_NaN_surface!(Z::Array,X::Array,Y::Array)
Removes NaN's from a grid Z
by taking the closest points as specified by X
and Y
.
GeophysicalModelGenerator.removefield
— MethodV = removefield(V::AbstractGeneralGrid,field_name::String)
Removes the field with name field_name
from the GeoData or CartData dataset
GeophysicalModelGenerator.removefield
— MethodV = removefield(V::AbstractGeneralGrid,field_name::Symbol)
Removes the field with name field_name
from the GeoData or CartData dataset
GeophysicalModelGenerator.removefield
— MethodV = removefield(V::AbstractGeneralGrid,field_name::NTuple{N,Symbol})
Removes the fields in the tuple field_name
from the GeoData or CartData dataset
GeophysicalModelGenerator.rotate_translate_scale
— MethodData_R = rotate_translate_scale(Data::Union{ParaviewData, CartData}; Rotate=0, Translate=(0,0,0), Scale=(1.0,1.0,1.0), Xc=(0.0,0.0))
Does an in-place rotation, translation and scaling of the Cartesian dataset Data
.
Parameters
Note that we apply the transformations in exactly this order:
Scale
: scaling applied to thex,y,z
coordinates of the data setRotate
: rotation around thex/y
axis (around the center of the box)Translate
: translationXc
: center of rotation
Example
julia> X,Y,Z = xyz_grid(10:20,30:40,-50:-10);
julia> Data_C = ParaviewData(X,Y,Z,(Depth=Z,))
ParaviewData
size : (11, 11, 41)
x ϵ [ 10.0 : 20.0]
y ϵ [ 30.0 : 40.0]
z ϵ [ -50.0 : -10.0]
fields: (:Depth,)
julia> Data_R = rotate_translate_scale(Data_C, Rotate=30);
julia> Data_R
ParaviewData
size : (11, 11, 41)
x ϵ [ 8.169872981077807 : 21.83012701892219]
y ϵ [ 28.16987298107781 : 41.83012701892219]
z ϵ [ -50.0 : -10.0]
fields: (:Depth,)
GeophysicalModelGenerator.save_GMG
— Methodsave_GMG(filename::String, data::Union{GeoData, CartDat, UTMData}; dir=pwd())
Saves the dataset data
to a JLD2 file
(name without extension) in the directory dir
Example
julia> Lon3D,Lat3D,Depth3D = lonlatdepth_grid(1.0:3:10.0, 11.0:4:20.0, (-20:5:-10)*km);
julia> Data_set = GeophysicalModelGenerator.GeoData(Lon3D,Lat3D,Depth3D,(DataFieldName=Depth3D,))
julia> save_GMG("test",Data_set)
GeophysicalModelGenerator.save_LaMEM_markers_parallel
— Methodsave_LaMEM_markers_parallel(Grid::CartData; PartitioningFile=empty, directory="./markers", verbose=true, is64bit=false)
Saves a LaMEM marker file from the CartData
structure Grid
. It must have a field called Phases
, holding phase information (as integers) and optionally a field Temp
with temperature info. It is possible to provide a LaMEM partitioning file PartitioningFile
. If not, output is assumed to be for one processor. By default it is assumed that the partitioning file was generated on a 32bit PETSc installation. If Int64
was used instead, set the flag.
The size of Grid
should be consistent with what is provided in the LaMEM input file. In practice, the size of the mesh can be retrieved from a LaMEM input file using read_LaMEM_inputfile
.
Example
julia> Grid = read_LaMEM_inputfile("LaMEM_input_file.dat")
julia> Phases = zeros(Int32,size(Grid.X));
julia> Temp = ones(Float64,size(Grid.X));
julia> Model3D = CartData(Grid, (Phases=Phases,Temp=Temp))
julia> save_LaMEM_markers_parallel(Model3D)
Writing LaMEM marker file -> ./markers/mdb.00000000.dat
If you want to create a LaMEM input file for multiple processors:
julia> save_LaMEM_markers_parallel(Model3D, PartitioningFile="ProcessorPartitioning_4cpu_1.2.2.bin")
Writing LaMEM marker file -> ./markers/mdb.00000000.dat
Writing LaMEM marker file -> ./markers/mdb.00000001.dat
Writing LaMEM marker file -> ./markers/mdb.00000002.dat
Writing LaMEM marker file -> ./markers/mdb.00000003.dat
GeophysicalModelGenerator.save_LaMEM_topography
— Methodsave_LaMEM_topography(Topo::CartData, filename::String)
This writes a topography file Topo
for use in LaMEM, which should have size (nx,ny,1)
and contain the field :Topography
GeophysicalModelGenerator.screenshot_to_CartData
— MethodData = screenshot_to_CartData(filename::String, Corner_LowerLeft, Corner_UpperRight; Corner_LowerRight=nothing, Corner_UpperLeft=nothing)
Does the same as screenshot_to_GeoData
, but returns a CartData
structure
GeophysicalModelGenerator.screenshot_to_GeoData
— Methodscreenshot_to_GeoData(filename::String, Corner_LowerLeft, Corner_UpperRight; Corner_LowerRight=nothing, Corner_UpperLeft=nothing, Cartesian=false, UTM=false, UTMzone, isnorth=true, fieldname::Symbol=:colors)
Take a screenshot of Georeferenced image either a lat/lon
, x,y
(if Cartesian=true
) or in UTM coordinates (if UTM=true
) at a given depth or along profile and converts it to a GeoData
, CartData
or UTMData
struct, which can be saved to Paraview
The lower left and upper right coordinates of the image need to be specified in tuples of (lon,lat,depth)
or (UTM_ew, UTM_ns, depth)
, where depth
is negative inside the Earth (and in km).
The lower right and upper left corners can be specified optionally (to take non-orthogonal images into account). If they are not specified, the image is considered orthogonal and the corners are computed from the other two.
Note: if your data is in UTM
coordinates you also need to provide the UTMzone
and whether we are on the northern hemisphere or not (isnorth
).
GeophysicalModelGenerator.screenshot_to_UTMData
— MethodData = screenshot_to_UTMData(filename::String, Corner_LowerLeft, Corner_UpperRight; Corner_LowerRight=nothing, Corner_UpperLeft=nothing, UTMzone::Int64=nothing, isnorth::Bool=true, fieldname=:colors)
Does the same as screenshot_to_GeoData
, but returns for UTM data Note that you have to specify the UTMzone
and isnorth
GeophysicalModelGenerator.spacing
— Methoddlon, dlat = spacing(lon,lat)
Computes the spacing with central differences
GeophysicalModelGenerator.subtract_horizontalmean
— MethodV_sub = subtract_horizontalmean(V::AbstractArray{T, 3}; Percentage=false)
Subtracts the horizontal average of the 3D data array V.
If Percentage=true
, the result is given as percentage; otherwise absolute values are returned
GeophysicalModelGenerator.subtract_horizontalmean
— MethodV_sub = subtract_horizontalmean(V::AbstractArray{T, 2}; Percentage=false)
Subtracts the horizontal average of the 2D data array V.
If Percentage=true
, the result is given as percentage; otherwise absolute values are returned
GeophysicalModelGenerator.swap_yz_dims
— Methodfe_swap = swap_yz_dims(fe_data::FEData)
This swaps the y
and z
dimensions of the FEData object, which is useful for pTatin as it uses y
for what is z
in GMG.
GeophysicalModelGenerator.velocity_spherical_to_cartesian!
— Methodvelocity_spherical_to_cartesian!(Data::GeoData, Velocity::Tuple)
In-place conversion of velocities in spherical velocities [Veast, Vnorth, Vup]
to cartesian coordinates (for use in paraview).
NOTE: the magnitude of the vector will be the same, but the individual [Veast, Vnorth, Vup]
components will not be retained correctly (as a different [x,y,z]
coordinate system is used in paraview). Therefore, if you want to display or color that correctly in Paraview, you need to store these magnitudes as separate fields
GeophysicalModelGenerator.votemap
— Methodvotemap(DataSets::Vector{GeoData}, criteria::Vector{String}, dims=(50,50,50))
Creates a Vote map which shows consistent features in different 2D/3D tomographic datasets.
The way it works is:
- Find a common region between the different GeoData sets (overlapping lon/lat/depth regions)
- Interpolate the fields of all DataSets to common coordinates
- Filter data points in one model (e.g., areas with a velocity anomaly > 2 percent). Set everything that satisfies this criteria to 1 and everything else to 0.
- Sum the results of the different datasets
If a feature is consistent between different datasets, it will have larger values.
Example
We assume that we have 2 seismic velocity datasets Data_Zhao_Pwave
and DataKoulakov_Alps
:
julia> Data_Zhao_Pwave
GeoData
size : (121, 94, 101)
lon ϵ [ 0.0 : 18.0]
lat ϵ [ 38.0 : 51.95]
depth ϵ [ -1001.0 km : -1.0 km]
fields: (:dVp_Percentage,)
julia> DataKoulakov_Alps
GeoData
size : (108, 81, 35)
lon ϵ [ 4.0 : 20.049999999999997]
lat ϵ [ 37.035928143712574 : 49.01197604790419]
depth ϵ [ -700.0 km : -10.0 km]
fields: (:dVp_percentage, :dVs_percentage)
You can create a votemap which combines the two data sets with:
julia> Data_VoteMap = votemap([Data_Zhao_Pwave,DataKoulakov_Alps],["dVp_Percentage>2.5","dVp_percentage>3.0"])
GeoData
size : (50, 50, 50)
lon ϵ [ 4.0 : 18.0]
lat ϵ [ 38.0 : 49.01197604790419]
depth ϵ [ -700.0 km : -10.0 km]
fields: (:votemap,)
You can also create a votemap of a single dataset:
julia> Data_VoteMap = votemap(Data_Zhao_Pwave,"dVp_Percentage>2.5", dims=(50,51,52))
GeoData
size : (50, 51, 52)
lon ϵ [ 0.0 : 18.0]
lat ϵ [ 38.0 : 51.95]
depth ϵ [ -1001.0 km : -1.0 km]
fields: (:votemap,)
GeophysicalModelGenerator.voxel_grav
— Methodvoxel_grav(X::Array{Float64, 3}, Y::Array{Float64, 3}, Z::Array{Float64, 3}, RHO::Array{Float64, 3};
refMod="AVG", lengthUnit="m", rhoTol=1e-9, Topo=[], outName="Bouguer", printing=true)
Computes Bouguer anomalies and gradients
Required arguments:
X
,Y
,Z
: 3D matrices with the coordinates of the grid (X should vary in the first dimension, Y in the second, Z (vertical) in the third)RHO
: 3D matrix with the density at each grid point [kg/m^3]
Optional arguments:
refMod
: 1D vector with the reference density for each depth. Alternatively, the strings "NE", "SE", "SW", "NW", "AVG" can be used. In that case, one of the corners ofRHO
is used as reference model.In case of "AVG" the reference model is the average of each depth slice.lengthUnit
: The unit of the coordinates and topography file. Either "m" or "km"rhoTol
: density differences smaller thanrhoTol
will be ignored [kg/m^3]Topo
: 2D matrix with the topography of the surface (only relevant for the paraview output)outName
: name of the paraview output (do not include file type)printing
: activate printing of additional information [true
orfalse
]
GeophysicalModelGenerator.write_ASAGI
— Methodwrite_ASAGI(fname::String, Data::CartData;
fields::Union{Nothing, Tuple}=nothing,
km_to_m::Bool=false)
Writes a CartData structure Data
to an ASAGI file, which can be read by SeisSol or ExaHype. You can optionally pass a tuple with fields to be written. Note that we can only write individual (scalar) fields to disk, so vector or tensor fields needs to be split first
GeophysicalModelGenerator.write_FEmesh_fields
— Methodwrite_FEmesh_fields(data::FEData)
Writes cell and vertex fields to disk to be read by pTatin
GeophysicalModelGenerator.write_FEmesh_mesh
— Methodwrite_FEmesh_mesh(vdata::FEData; out_file="md.bin", connectivity_zero_based=true)
Writes a binary file with the mesh information for pTatin
GeophysicalModelGenerator.write_pTatin_mesh
— Methodwrite_pTatin_mesh(fe_mesh::FEData; out_file="md.bin", connectivity_zero_based=true)
Write a binary file with the mesh information for pTatin
GeophysicalModelGenerator.write_pTatin_mesh
— Methodwrite_pTatin_mesh(q1_mesh::Q1Data; out_file="md.bin", connectivity_zero_based=true)
Write a binary file with the mesh information for pTatin
GeophysicalModelGenerator.write_paraview
— Functionwrite_paraview(DataSet::FEData, filename="test"; directory=nothing, pvd=nothing, time=nothing, verbose=true)
Writes a FEData
dataset (general finite element) to disk, which has cell and vertex field
GeophysicalModelGenerator.write_paraview
— Functionpvd = write_paraview(DataSet::ParaviewData, filename="test"; PointsData=false, pvd=nothing, time=nothing, directory=nothing, verbose=true)
Writes a structure with Geodata
to a paraview (or VTK) file. If you have unstructured points (e.g., earthquake data), set PointsData=true
. In case you want to create a movie in Paraview, and this is a timestep of that movie you also have to pass time
and pvd
Example 1: Write a 3D volume
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,(-300:25:0)km);
julia> Data_set = GeoData(Lat,Lon,Depth,(Depthdata=Depth,LonData=Lon))
julia> write_paraview(Data_set, "test_depth3D")
Example 2: Horizontal slice @ given depth
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,10km);
julia> Data_set = GeoData(Lat,Lon,Depth,(Topography=Depth,))
julia> write_paraview(Data_set, "test")
Example 3: Case with topography
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,10km);
julia> Depth[2:4,2:4,1] .= 25km
julia> Data_set = GeoData(Lat,Lon,Depth,(Topography=Depth,))
julia> write_paraview(Data_set, "test2")
Example 4: Profile
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,35,(-300:25:0)km);
julia> Data_set = GeoData(Lat,Lon,Depth,(DataSet=Depth,Depth=Depth))
julia> write_paraview(Data_set, "test")
Example 5: Velocity vectors
julia> Lon,Lat,Depth = lonlatdepth_grid(10:20,30:40,10km);
julia> Ve, Vn, Vz = ones(size(Depth)), ones(size(Depth))*0.5, zeros(size(Depth));
julia> Data_set = GeoData(Lat,Lon,Depth,(DataSet=Depth, Velocity=(Ve,Vn,Vz)))
GeoData
size : (11, 11, 1)
lon ϵ [ 30.0 - 40.0]
lat ϵ [ 10.0 - 20.0]
depth ϵ [ 10.0 km - 10.0 km]
fields: (:DataSet, :Velocity)
julia> write_paraview(Data_set, "test_Velocity")
Example 6: Unconnected points (e.g., earthquake locations)
Note that these points should be 1D vectors.
julia> Lon,Lat,Depth = lonlatdepth_grid(10:5:20,35:2:40,(-300:50:0)km);
julia> Lon=Lon[:]; Lat=Lat[:]; Depth=Depth[:];
julia> Data_set = GeoData(Lat,Lon,Depth,(DataSet=Depth[:],Depth=Depth*10));
julia> write_paraview(Data_set, "test_Points", PointsData=true)
GeophysicalModelGenerator.write_paraview
— Functionwrite_paraview(DataSet::Q1Data, filename="test"; directory=nothing, pvd=nothing, time=nothing, verbose=true)
Writes a Q1Data
dataset to disk, which has cell and vertex field
GeophysicalModelGenerator.write_paraview
— Methodwrite_paraview(DataSet::CartData, filename::Any; PointsData=false, pvd=nothing, time=nothing, directory=nothing, verbose=true)
Writes a CartData
structure to paraview.
GeophysicalModelGenerator.write_paraview
— Methodwrite_paraview(DataSet::UTMData, filename::Any; PointsData=false, pvd=nothing, time=nothing, directory=nothing, verbose=true)
Writes a UTMData
structure to paraview. Note that this data is not transformed into an Earth-like framework, but remains cartesian instead.
GeophysicalModelGenerator.xyz_grid
— MethodX,Y,Z = xyz_grid(X_vec::Any, Y_vec::Any, Z_vec::Any)
Creates a X,Y,Z
grid. It works just as lonlatdepth_grid
apart from the better suited name.
Example 1: Create 3D grid
julia> X,Y,Z = xyz_grid(10:20,30:40,(-10:-1)km);
julia> size(X)
(11, 11, 10)
See lonlatdepth_grid
for more examples.
WhereTheWaterFlows.waterflows
— FunctionTopo_water, sinks, pits, bnds = waterflows(Topo::GeoData;
flowdir_fn=WhereTheWaterFlows.d8dir_feature, feedback_fn=nothing, drain_pits=true, bnd_as_sink=true,
rainfall = nothing,
minsize=300)
Takes a GMG GeoData object of a topographic map and routes water through the grid. Optionally, you can specify rainfall
in which case we accumulate the rain as specified in this 2D array instead of the cellarea. This allows you to, for example, sum, up water if you have variable rainfall in the area. The other options are as in the waterflows
function of the package WhereTheWaterFlows
.
Example
# Download some topographic data
julia> Topo = import_topo([6.5,7.3,50.2,50.6], file="@earth_relief_03s");
# Flow the water through the area:
julia> Topo_water, sinks, pits, bnds = waterflows(Topo)
julia> Topo_water
GeoData
size : (961, 481, 1)
lon ϵ [ 6.5 : 7.3]
lat ϵ [ 50.2 : 50.59999999999999]
depth ϵ [ 0.045 : 0.724]
fields : (:Topography, :area, :slen, :dir, :nout, :nin, :c)