Shear heating
Methods
Heat caused by non-recoverable deformation can be specified in
GeoParams.MaterialParameters.Shearheating.ConstantShearheating
— TypeConstantShearheating(Χ=0.0NoUnits)
Set the shear heating efficiency [0-1] parameter
\[Χ = cst\]
where $\Chi$ is the shear heating efficiency [NoUnits]
Shear heating is computed as
\[H_s = \Chi \cdot \tau_{ij}(\dot{\varepsilon}_{ij} - \dot{\varepsilon}^{el}_{ij})\]
Computational routines
To compute, use this:
GeoParams.MaterialParameters.Shearheating.compute_shearheating
— FunctionH_s = compute_shearheating(s:<AbstractShearheating, τ, ε, ε_el)
Computes the shear heating source term
\[H_s = \Chi \cdot \tau_{ij} ( \dot{\varepsilon}_{ij} - \dot{\varepsilon}^{el}_{ij})\]
Parameters
- $\Chi$ : The efficiency of shear heating (between 0-1)
- $\tau_{ij}$ : The full deviatoric stress tensor [4 components in 2D; 9 in 3D]
- $\dot{\varepsilon}_{ij}$ : The full deviatoric strainrate tensor
- $\dot{\varepsilon}^{el}_{ij}$ : The full elastic deviatoric strainrate tensor
H_s = ComputeShearheating(s:<AbstractShearheating, τ, ε)
Computes the shear heating source term when there is no elasticity
\[H_s = \Chi \cdot \tau_{ij} \dot{\varepsilon}_{ij}\]
Parameters
- $\Chi$ : The efficiency of shear heating (between 0-1)
- $\tau_{ij}$ : The full deviatoric stress tensor [4 components in 2D; 9 in 3D]
- $\dot{\varepsilon}_{ij}$ : The full deviatoric strainrate tensor
GeoParams.MaterialParameters.Shearheating.compute_shearheating!
— Functioncompute_shearheating!(H_s, s:<AbstractShearheating, τ, ε, ε_el)
Computes the shear heating source term in-place
\[H_s = \Chi \cdot \tau_{ij} ( \dot{\varepsilon}_{ij} - \dot{\varepsilon}^{el}_{ij})\]
Parameters
- $\Chi$ : The efficiency of shear heating (between 0-1)
- $\tau_{ij}$ : The full deviatoric stress tensor [4 components in 2D; 9 in 3D]
- $\dot{\varepsilon}_{ij}$ : The full deviatoric strainrate tensor
- $\dot{\varepsilon}^{el}_{ij}$ : The full elastic deviatoric strainrate tensor
NOTE: The shear heating terms require the full deviatoric stress & strain rate tensors, i.e.:
\[2D: \tau_{ij} = \left( \begin{matrix} \tau_{xx} & \tau_{xz} \\ \tau_{zx} & \tau_{zz} \end{matrix} \right)\]
Since $\tau_{zx}=\tau_{xz}$, most geodynamic codes only take one of the terms into account; shear heating requires all components to be used!
compute_shearheating!(H_s, s:<AbstractShearheating, τ, ε)
Computes the shear heating source term H_s
in-place when there is no elasticity
\[H_s = \Chi \cdot \tau_{ij} \dot{\varepsilon}_{ij}\]
Parameters
- $\Chi$ : The efficiency of shear heating (between 0-1)
- $\tau_{ij}$ : The full deviatoric stress tensor [4 components in 2D; 9 in 3D]
- $\dot{\varepsilon}_{ij}$ : The full deviatoric strainrate tensor